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Abstract

Within-host model specified by viral dynamic parameters is a mainstream tool to
understand SARS-CoV-2 replication cycle in infected patients. The parameter uncer-
tainty further affects the output of the model, such as the efficacy of potential antiviral
drugs. However, gathering empirical data on these parameters is challenging. Here, we
aim to conduct a systematic review of viral dynamic parameters used in within-host
models by calibrating the model to the viral load data measured from upper respiratory
specimens. We searched the PubMed, Embase and Web of Science databases (between
1 December 2019 and 10 February 2022) for within-host modelling studies. We
identified seven independent within-host models from the above nine studies, includ-
ing Type | interferon, innate response, humoral immune response or cell-mediated
immune response. From these models, we extracted and analyse seven widely used
viral dynamic parameters including the viral load at the point of infection or symp-
tom onset, the rate of viral particles infecting susceptible cells, the rate of infected
cells releasing virus, the rate of virus particles cleared, the rate of infected cells cleared
and the rate of cells in the eclipse phase can become productively infected. We identi-
fied seven independent within-host models from nine eligible studies. The viral load at
symptom onset is 4.78 (95% Cl:2.93, 6.62) log(copies/ml), and the viral load at the point
of infection is —1.00 (95% Cl:—1.94, —0.05) log(copies/ml). The rate of viral particles
infecting susceptible cells and the rate of infected cells cleared have the pooled esti-
mates as —6.96 (95% Cl:—7.66, —6.25) log([copies/ml]-* day~*) and 0.92 (95% CI:—0.09,
1.93) day1, respectively. We found that the rate of infected cells cleared was associ-
ated with the reported model in the meta-analysis by including the model type as a
categorical variable (p < .01). Joint viral dynamic parameters estimates when parame-
terizing within-host models have been published for SARS-CoV-2. The reviewed viral
dynamic parameters can be used in the same within-host model to understand SARS-
CoV-2 replication cycle in infected patients and assess the impact of pharmaceutical
interventions.
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1 | INTRODUCTION

Cases of COVID-19 were first reported in Wuhan, China, in late
December 2019 and rapidly emerged in cities throughout the world
(The Washington Post, 2020). As of 3 April 2021, 491 million COVID-
19 cases have been reported in over 200 countries or territories and
6.15 million deaths (WHO, 2020). Five variants of concern (VOC),
together with eight variants of interest, have already been identified
by WHO (WHO, 2022), with the potential to be more transmissible
(Davies et al., 2020; Leung et al., 2021; Volz et al., 2021) and evade
immunity acquired through prior infection or vaccination (Wang et al.,
2021).

The health burden increases along with the virus continuing its
global march outward. Mathematical models could deepen our under-
standing of the epidemiological impact of non-pharmaceutical inter-
ventions (such as wearing masks and social distancing) and the vaccine
effectiveness (Vespignani et al., 2020) in the population level, and also
the SARS-CoV-2 replication cycle of viruses at the within-host level
(Challenger et al., 2022). However, it is challenging to estimate viral
dynamic parameters, such as the rate of viral particles infecting suscep-
tible cells and the rate of infected cells releasing virus, from empirical
observations.

Motivated by the availability of virus load within the host measured
from upper respiratory specimens after symptom onset, viral dynamic
parameters can be estimated by calibrating the within-host model to
the viral load data. We conduct a systematic review of viral dynamic
parameters estimated in the fitted within-host models which charac-
terize the dynamic of target cells infected by SARS-CoV-2 and the
dynamic of SARS-CoV-2 replication.

2 | MATERIALS AND METHODS
2.1 | Data source and searches

We performed a systematic review of peer-reviewed studies on within-
host models of SARS-CoV-2 in PubMed, Embase and Web of Science on
10 February 2022. We searched studies in the above three databases
with a combination of the following search terms, with no restriction
on publication language: ('SARS-CoV-2), ‘COVID-19, ‘COVID 2019,
‘coronavirus 2019’ or ‘novel coronavirus’) and (‘within-host’, ‘in-host’,
‘withinhost’ or ‘inhost’). The searched studies were set to be published
between 1 December 2019 and 10 February 2022.

2.2 | Study selection

We (Z. W.D. and S. Q. W.) assessed eligible studies, extracted relevant
data and conducted cross-checked. Conflicts over the study selection
were resolved by another researcher (Y. B.). We excluded studies based
on screening titles and abstracts if they were (1) duplicate publications;
(2) reviews; (3) non-modelling studies; (4) not conducted in humans.

Then, we further excluded studies based on screening full texts if: (1)
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the within-host models are not the main topic; (2) the primary outcome
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is not the viral load measured from upper respiratory specimens; (3) all
virus dynamic parameters are based on simple assumptions for numeri-
cal simulations. We reported studies following the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

2.3 | Data extraction and analysis

Information was extracted on the viral dynamic parameters coupled
with the corresponding 95% confidence interval (Cl). We use the 2
index to assess heterogeneity between studies into the following three
categories: 12 < 25% (low heterogeneity), 2= 25-75% (average het-
erogeneity) and 12 > 75% (high heterogeneity). Because of the high I?
value that was calculated in our results, as well as the significance of the
Cochran Q test, a random-effects model was further used to perform a

meta-analysis in this study. Analyses were conducted in R version 4.1.1.

3 | RESULTS

We identified 1106 studies through the electronic search of the
databases between 1 December 2019 and 10 February 2022 (386,
PubMed; 358 Embase; and 362, Web of Science). 459 studies left after
excluding duplicates. After 391 studies were excluded based on titles
and abstracts screening, we retrieved 68 studies eligible for the full-
text screening. Next, after we excluded 59 studies based on full-text
screening, nine studies met the inclusion criteria and were included in
the systematic review (Figure 1 and Table 1).

We identified seven independent within-host models from the
above nine studies (Figure S1). Uninfected cells enter an eclipse state
or an infected state after infection. A portion of infected cells repro-
duce viruses that are contagious or not, which may be blocked by
Type | interferon, innate response, humoral immune response and
cell-mediated immune response. The studies were published during
the COVID-19 pandemic and the empirical virus load data were col-
lected from five countries, including Germany, Singapore, China, Korea
and America. We summarize seven widely used viral dynamic param-
eters from these studies and estimate the mean, 95% CI (Figure 2
and Table S1). Specifically, the viral load at symptom onset, V(0)%, is
4.78 (95% Cl:2.93, 6.62) log(copies/ml) in three models from four stud-
ies (lwanami et al., 2021; Jenner A.L. et al., 2021; Jeong et al., 2021;
Kim K.S. et al, 2021), and the viral load at the point of infection,
V(0)%, is —1.00 (95% Cl:—0.94, —0.05) log(copies/ml) in three models
from three studies (Hernandez-Vargas and Velasco-Hernandez, 2020;
Czuppon P. et al., 2021; Fatehi et al., 2021) (Figure 2(a)). The rate
of viral particles infecting susceptible cells (virus infection rate, ) is
—4.97 (95% Cl:=9.77, —0.16) log([copies/ml]~1 day~1) in six models
from eight studies (Hernandez-Vargas and Velasco-Hernandez, 2020;
Fatehi et al., 2021; Iwanami et al.,, 2021; Jenner A.L. et al., 2021;
Jeong et al., 2021; Ke et al,, 2021; Kim K.S. et al., 2021; Sadria M.
and Layton AT, 2021) (Figure 2(b)), with pooled estimates of —6.96
(95% Cl:—7.66, —6.25) log([copies/ml]~1 day~1) (Table S1). The rate
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FIGURE 1

of infected cells releasing virus (virus replication rate, p) is 0.77 (95%
Cl:—5.39, 6.94) log((copies/ml day~! cell"1) in three models from three
studies (Hernandez-Vargas and Velasco-Hernandez, 2020; Czuppon P.
et al., 2021; Fatehi et al., 2021) (Figure 2(c)). The rate of virus par-
ticles cleared (virus clearance rate, ¢) is 5.19 (95% Cl:—3.42, 13.81)
day~1infour models from five studies (Hernandez-Vargas and Velasco-
Hernandez, 2020; Czuppon P. et al., 2021; Fatehi et al., 2021; Jenner
AL. et al,, 2021; Ke et al., 2021) (Figure 2(d)). The rate of infected
cells cleared (infected cell clearance rate, ) is 0.88 (95% Cl:—0.25,
2.02) day~? in seven models from nine studies (Hernandez-Vargas and
Velasco-Hernandez, 2020; Czuppon P. et al., 2021; Fatehi et al., 2021;
lwanami et al., 2021; Jenner A.L. et al., 2021; Jeong et al.,, 2021; Ke
et al, 2021; Kim K.S. et al,, 2021; Sadria M. and Layton AT, 2021)

PRISMA flow diagram for searching and selecting studies in the systematic review

(Figure 2(e)), with pooled estimates of 0.92 (95% Cl:—0.09, 1.93) day~1.
The rate of cells in the eclipse phase can become productively infected
(transition rate from the eclipse phase to the productively infected, k) is
3.75(95% Cl:—0.04, 7.54) day~1 in five models from five studies (Czup-
pon P. et al,, 2021; Fatehi et al., 2021; Jenner A.L. et al., 2021; Jeong
et al, 2021; Ke et al., 2021) (Figure 2(f)). Using the random-effects
model, we estimated the rate of viral particles infecting susceptible
cells (virus infection rate, 8) and the rate of virus particles cleared (virus
clearance rate, c) have the pooled estimates as —6.96 (95% Cl:—7.66,
—6.25) log([copies/ml]~1 day~1) and 0.92 (95% Cl:—0.09, 1.93) day~1,
respectively (Figures S2 and S3 and Table S1).

High heterogeneity of the rate of infected cells cleared (infected

cell clearance rate, §) were reported among the included studies with
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® Standard target cell limited model
® Target cell limited model with eclipse phase and innate response
® Target cell limited model with eclipse phase and adaptive immune response
® Target cell limited model with eclipse phase and non-infectious virions
= Target cell limited model with eclipse phase

Target cell limited model with innate response

® Target cell limited model with innate response and adaptive immune response

Estimates of parameters of SARS-CoV-2 within-host model. The dots and error bars demonstrate the estimated mean and 95%

confidence interval, respectively, from seven independent within-host models from nine studies (Figure S1 and Table 1). (a) The viral load at
symptom onset or at the point of infection (V(0)® or V(0)&). (b) The rate of viral particles infecting susceptible cells (virus infection rate, B). (c) The
rate of infected cells releasing virus (virus replication rate, p). (d) The rate of virus particles cleared (virus clearance rate, c). (e) The rate of infected
cells cleared (infected cell clearance rate, ). (f) The rate of cells in the eclipse phase can become productively infected (transition rate from the

eclipse phase to the productively infected, k)

respect to models studied (12 = 92%, p < .01) (Figure S4). To explore
the potential association between the within-host models and the rate
of infected cells cleared (infected cell clearance rate, §), we conducted
the meta-regression analysis for this parameter. We found that the
value of this parameter summarized in seven models from nine studies
(Hernandez-Vargas and Velasco-Hernandez, 2020; Czuppon P. et al.,
2021; Fatehi et al., 2021; Iwanami et al., 2021; Jenner A.L. et al., 2021;
Jeong et al., 2021; Ke et al., 2021; Kim K.S. et al., 2021; Sadria M. and
Layton AT, 2021) was associated with the reported model in the meta-
analysis by including the model type as a categorical variable (p <.01)
(Figure S4). This may be because of the model-specific differences in

characterizing the viral replication and clearance.

4 | DISCUSSION

The future of the pandemic is uncertain given the continuing emer-

gence of new variants (Wang et al., 2021). Within-host modelling

could help to characterize the transmission dynamics within a host.
We performed a systematic review and meta-analysis of the published
estimates of viral dynamic parameters in the within-host models.
Antivirals for SARS-CoV-2 were initially developed by repurpos-
ing approved therapies for other diseases that did not require extra
clinical trials. Eight SARS-CoV-2 treatments have been licensed by
the United States Food and Drug Administration (US FDA) for use
in the United States as of 25 March 2022 (Zimmer et al., 2020).
Remdesivir was originally developed to treat Ebola and Hepati-
tis C (Zimmer et al., 2020; Gottlieb et al., 2022), which was the
first repurposed and approved drug by US FDA in October 2020
and had treated over nine million patients around the world by
December 2021 (Gilead Sciences, Inc., n.d.). Another antiviral against
SARS-CoV-2 infections, Molnupiravir, got US FDA emergency use
authorization on 23 December 2021 (Merck & Co., Inc., 2021), which
could reduce the risk of hospitalization by 30% (Food and Drug Admin-
istration, 2021). Paxlovid (combination of nirmatrelvir and ritonavir)

received the US FDA emergency authorization on 22 December 2021,
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with the reduction of hospitalization risks by 88% (Hammond et al.,
2022).
Within-host modelling provides a framework to study the impacts

P SR

of antiviral therapy on the transmission dynamics of SARS-CoV-2.
CQOVID-19 can be treated mainly in one of two ways (Fatehi et al.,
2021): that inhibits virus production (e.g., Remdesivir (Beigel et al.,
2020), Molnupiravir (Bai et al., 2022)) and convalescent plasma therapy
(Duan et al., 2020). The emergence of COVID-19 variants, on the other
hand, makes rigorous evaluation of effective treatment procedures
challenging in clinical trials, highlighting the value of mathematical
within-host models. The seven study models in this review could be
used to evaluate the efficacy of antivirals against SARS-CoV-2 virus,
for example, the target cell limited model with eclipse phase was
used to evaluate the impact of antiviral treatment timing on reducing
SARS-CoV-2 viral load for Remdesivir (Goncalves et al., 2020), and the
standard target cell limited model was used to evaluate the effect of
Molnupiravir for oral treatment of COVID-19 (Bai et al., 2022). Regard-
ing the CP therapy, its impact on viral dynamics could be modelled by
other models with immune response (Fatehi et al., 2021), which is con-
sidered to be effective against COVID-19 with limited side effects in
clinical trials (Duan et al., 2020). To model viral transmission, the infec-
tiousness of an individual is mainly linked to the viral load into three
types of viral load-infectiousness coupling functions: logarithmic, sig-
moid and linear (Handel and Rohani, 2015; Néant et al., 2021). The
seven within-host models could all provide insights into the efficacy
of different treatment starts to combat the COVID-19 pandemic by
evaluating the viral load dynamics over time. The parameter uncer-
tainty analysis on the impacts of antiviral therapy could provide more
information before using the results to make a decision.

We provide an overview of the limitations of our study. First, those
studies only study the wide-type SARS-CoV-2 virus, with no VOC
included. Second, most of the eligible studies do not account for the
difference between different age groups and risk groups, and the wan-
ing vaccine-derived immunity and re-infection, which may introduce a
bias if directly used for variants. Third, the pooled parameter values
would be preferable to target wide-type viruses without vaccination

and natural infection.

5 | CONCLUSION

Joint viral dynamic parameters estimates when parameterizing within-
host models have been published for SARS-CoV-2, with models asso-
ciated with the reported estimates of the rate of infected cells cleared.
The reviewed viral dynamic parameters can be used in the same within-
host model to understand SARS-CoV-2 replication cycle in infected

patients and assess the impact of pharmaceutical interventions.
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