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ABSTRACT

Introduction: The ease of coronavirus disease
2019 (COVID-19) non-pharmacological interventions
and the increased susceptibility during the past
COVID-19 pandemic could be a precursor for the
resurgence of influenza, potentially leading to a severe
outbreak in the winter of 2022 and future seasons. The
recent increased availability of data on Electronic
Health Records (EHR) in public health systems, offers
new opportunities to monitor individuals to mitigate
outbreaks.

Methods: We introduced a new methodology to
rank individuals for surveillance in temporal networks,
which was more practical than the static networks. By
targeting previously infected nodes, this method used
readily available EHR data instead of the contact-
network structure.

Results: We validated this method qualitatively in
a real-world cohort study and evaluated our approach
quantitatively by comparing it to other surveillance
methods on three temporal and empirical networks.
We found that, despite not explicitly exploiting the
contacts’ network structure, it remained the best or
close to the best strategy. We related the performance
of the method to the public health goals, the
reproduction number of the disease, and the
underlying  temporal-network  structure  (e.g.,
burstiness).

Discussion: The proposed strategy of using
historical records for sentinel surveillance selection can
be taken as a practical and robust alternative without
the knowledge of individual contact behaviors for
public health policymakers.

Influenza infections were reported to be low between
the months of September 2021 and January 2022 (7).

The relaxation of coronavirus disease 2019
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(COVID-19) non-pharmacological interventions and
the increased susceptibility during the past COVID-19
pandemic have provided an opportunity for an increase
of more severe influenza epidemics to occur in
upcoming winters in temperate locations.

Infectious disease surveillance systems would provide
historical information on the occurrence of infections
and allow early detection of influenza outbreaks before
they are past the point of being contained. The
surveillance strategies that map out individual contact
behaviors fall into two general categories — those
based on static contact networks and those on
temporal contact networks. Due to contact networks
being essentially dynamic with temporal-network
structures [such as burstiness — individual activities
often happen in periods of intense activity (2)], the
problem remains somewhat more practical in the
context of temporal contact networks.

Retrospective  studies have demonstrated that
temporal network structures can influence the
spreading speed and the outbreak size but also
surveillance strategies (3-5). Cowling et al. compared
two temporal-network strategies to select sentinels
[sampling the recent contact, as the recent strategy, and
most frequent contact, as the frequent strategy, with
random individuals (2)], as well as two static-network
strategies (acquaintance and random), on temporal
networks for sentinel surveillance of outbreak detection
(3). The two temporal-network strategies both derive
carlier signals than static-network strategies for early
epidemic detection on networks with strong temporal
structures. However, due to physical contact data being
difficult to obtain, these strategies are difficult to be
applied to practical public health systems.

To detect an early signal for the emerging outbreak
using sentinel surveillance, the digital data on
Electronic Health Records (EHR) provide a unique
chance to test cutting-edge sentinel surveillance
strategies. The EHR of influenza viruses can help
detect other viruses, and have temporal characteristics
with records of when individuals were infected. Our
previous study found treatment records can be used to
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monitor emerging epidemic outbreaks (e.g., influenza)
and proposed a simple EHR-based strategy that
identifies the most vulnerable individuals who acquired
the ecarliest infections during historical influenza
seasons and could be a theoretically optimal
surveillance subset (6). However, it does not account
for the real-world data validation, the temporal contact
networks (in which the contact structure may not be
persistent enough), and the cross-strain immunity
(which could be gained during an influenza season to
protect the previously infected individuals from the
reinfection of a group of strains).

In the current study, we produced a practical data-
driven surveillance strategy by targeting previously
infected nodes with low cross-strain immunity to
accelerate  outbreak  detection using  sentinel
surveillance of previous earliest infected individuals.
We validated this strategy with a real-world cohort
study and further validated it by simulations using
mathematical epidemic models in temporal networks.
We quantified the early warning and Peak lag gained
by these selected individuals over different transmission
scenarios of effective reproduction numbers, R,s.

METHODS

Cohort Data

In the published dataset (7), serum specimens were
collected from a cohort of participants from 2008 to
2011, with each annual record for 956 individuals. We
identified an individual to be infected or not using a 4-
fold criterion of hemagglutination inhibition (HAI)
titers for each study year. Informed by the infection
history, we could evaluate the infection probability of a
case infected in a year based on the historical records,
together with its 95% confidence interval, using the
method of one-sample t-test.

Surveillance Strategies

We investigated three temporal-network strategies
for designing network-based surveillance systems. To
test the generality of our methodology, we compared it
with available temporal-network surveillance strategies
shown in Cowling et al. using three classes of temporal
complex networks with distinct temporal features
(Supplementary Material, available in htep://weekly.
chinacdc.cn/) (3).

Epidemic Model

We simulated epidemic outbreaks using a stochastic
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chain-binomial model in contact networks with nodes
as individuals and edges as epidemiologically relevant
contacts between individuals. We used the following
two criteria to evaluate the performance of each
surveillance strategy in the test epidemic season: Early
warning, and Peak lag (Supplementary Material).

Proposed Surveillance Based on

Individual Historical Vulnerability

In the static-network study, nodes with higher
eigenvector centrality were the theoretical optimal
surveillance subset (8). Conversely, nodes, which were
infected earlier, tended to have a higher eigenvector
centrality (6). We proposed a novel surveillance
strategy to target previously infected nodes (History)
based on estimating the vulnerability of each individual
using their infection history of seasonal respiratory
disease (e.g., influenza) registered in the EHR
(Figure 1). Let T]-i the time at which an individual ;
acquires infection in season 7 We defined the
vulnerability of an individual j to contract a respiratory
disease by their infection times in influenza season one
year ago. This vector ranked each individual in the
population by its historical vulnerability to getting
infected, which we used as a surveillance strategy.

To be convenient to use by policymakers (e.g.,
doctors in hospitals), Figure2 provides a schematic
overview of the proposed surveillance strategy with
four guidelines. Individuals who were uninfected in the
current season but infected in the last season had
higher rankings than others, which could have been
higher if they had been infected earlier in the last
season and had had more infection records in previous
seasons.

RESULTS

Real-world Evaluation Using Historical

Influenza Infections from a Cohort Study

Informed by a cohort of around 1,000 participants
from 2008 to 2011, when influenza A(HIN1)pdm09
circulated, with an annual electronic record of
influenza HAI titers (), we identified an individual to
be infected or not using a 4-fold criterion of HAI titers
for each study year and estimated the infection
probability of a case infected in the third year
with/without infection during the past two years
(Figure 1A and Supplementary Table S1, available in
http://weekly.chinacdc.cn). The participants, who were
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FIGURE 1. A schematic of the proposed surveillance strategy to target previously infected nodes (History). (A) Infection
probability of influenza virus in Hong Kong Special Administrative Region. (B) Informed by available historical observations
of individuals (a, b, c, and d) over two seasons from S1 to S2, each for one year. (C) In our proposed surveillance strategy,
individuals are ranked by the infection time in season S1 for season S2.

Note: In panel A, we studied a cohort of 956 participants from 2008 to 2011 with annual electronic records for three years
(2008 to 2010, and 2009 to 2011) (7). We estimated the probability of a case being infected in the third year, which was
infected or not in the past two years (Supplementary Table S1, available in http://weekly.chinacdc.cn/). Vertical bars and
error bars represent the estimated mean and 95% Cls. In panel B, the average historical vulnerability of an individual is
estimated from the historical infection time. In panel C, the black bars denote the observed infection timing of individuals in
the first and second/third historical seasons.

Abbreviation: S1=the first season; S2=the second season.
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FIGURE 2. A simplified schematic illustration of the proposed surveillance strategy.

Note: The proposed strategy ranks the included individuals following four guidelines. Individuals who were uninfected in the
current season but infected in the last season have higher rankings than others. And individuals can get a higher ranking if
they were infected earlier in the last season and have more infection records in previous seasons. By taking four individuals
(a, b, ¢, and d) as an example, users (e.g., doctors in hospitals) can assess their electronic records of historical seasons at
the end of the current season. Individuals a and c have one infection record in the last season, none in the current season,
and are ranked the highest. Given that a has been infected earlier than c, a has a higher ranking than c. If a and ¢ have the
same infection times in the last season, we could compare the number of infection records in previous seasons. Finally, the
ranking of the four individuals is a, ¢, d, and b. We used golden/silver/copper crowns and red stars to mark their ranking from
high to low.

infected in the first year but not in the second year, those participants may have more contact behaviors
had the highest infection probability of 22.49% [95% and low cross-strain immunity in the third year and
confidence interval (CI): 16.78%, 28.20%] in the third thus have a higher probability of infection. And
year (Figure 1A). In the contact network structure, historical EHR data can help identify those with higher
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infection risks of influenza outbreaks to some extent.

Simulation Evaluation of

Surveillance Strategies

We compared our proposed strategy (History)
(Figure 1) with three conventional temporal-network-
based surveillance strategies, including 1) the recent
strategy; 2) the frequent strategy, which uses the top
10% of individuals with the highest numbers of most
recent and frequent connections, respectively; and 3)
the random acquaintance strategy, which first
randomly selects 10% of a randomly selected
individual as the surveillance node (Figure 3).
networks, different from static
networks, the experience period for strategy learning
may not correlate with the evaluation period for
testing, and individual interactions may happen in a
short period. This may fail surveillance strategies if the
high centrality nodes in the experience period decrease
their centrality significantly or interactions in the
evaluation period. Thus, we investigate the impact of
burstiness [the phenomenon that human activities
often happen in intense periods separated by periods of
inactivity (2)] and persistence [measured by the
fraction of edges that is present both in the first and
last 5% of the contacts by the Jaccard similarity
coefficient (2)] on the performance of early warning
and Peak lags (Supplementary Table S2, available in
http://weekly.chinacdc.cn).  We  collected  and
summarized the properties of the study temporal
networks in Supplementary Table S2, with burstiness
ranging from 0.39 to 0.72 and persistence ranging
from 0 to 0.18.

Burstiness may correlate with the early warning
negatively  (Supplementary Table S3,
hetp://weekly.chinacdc.cn/). In the evaluation criteria

In  temporal

available in

for early warning, the proposed strategy outstrips the
networks. The
performance of our strategy is also comparable to the

random strategy in all three
frequent and recent strategies in the Prostitution and
Email networks, but not in the Dating network (which
has  the highest
Supplementary Table S3).  For

Prostitution network, under a low transmission

burstiness)

(Figure4  and
example, in the

scenario (R,=1.2) and a high transmission scenario
(R,=3), the history strategy has an early warning of
1.78 days (95% CI: 0.00, 3.56) and 0.71 days (95%
CI: -0.54, 1.95), respectively, which is around a half
day earlier than the recent and frequent strategies. In
the Dating network, the history strategy is better than
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the random strategy but not the other two. As for Peak
lag, there is no significant difference among study
strategies in the three temporal networks, given the
large 95% CI (Figure 4 and Supplementary Table $4,
available in http://weekly.chinacdc.cn).

DISCUSSION

Although influenza outbreaks are extremely
challenging to predict (9), alerting the onset of an
influenza pandemic would be extremely important for
public health agencies to respond before it pasts the
point of being contained.

Building on the availability of electronic health
record systems, we proposed a novel surveillance
strategy of selecting previously infected individuals for
sentinel surveillance in temporal networks. The beauty
of this approach is to exploit contact structure without
having to measure it — which is both difficult and
may change over time, inspired by that history of
infection will reflect temporal contact structure if it is
persistent enough. In practical use, for a new emerging
or reemerging infectious disease, it is not necessary for
our proposed strategy to ask for patient infection
history or prior knowledge of the same disease.

The proposed strategy does not work well in the
Dating network, perhaps due to its high bursty
coefficient (Supplementary Table S2). Individuals just
have intensive contact for a short period and hinder the
subsequent infections. For instance, one individual
who has intensive contacts in the training seasons has a
higher probability of getting infected than other
individuals, and thereby is ranked higher in our
proposed history strategy. However, this individual
may make few contacts in the test season and has a
lower probability to be infected and fail the history
strategy.

EHRs are the most essential component of health
information technology, with hospital adoption rates
representing a country’s level of medical digitalization.
In China, it was 83.6% and 86.6% in 2018 in China’s
economically underdeveloped and developed hospitals,
respectively (/0). Although the growth rate of EHR
adoption has been slow since 2013, as a result of many
hospitals in underdeveloped areas lacking sufficient
financial support and staffing funds, the Chinese
government has begun to reform relevant policies,
implementing both financial assistance and policy-
guiding measures gradually (70). With the
implementation of EHR systems in underdeveloped
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FIGURE 3. Schematic illustration of surveillance strategies. (A) The example of a temporal network with two time phases.
(B) The schematic illustration of the Recent surveillance strategy. (C) The schematic illustration of the Frequent surveillance
strategy. (D) The schematic illustration of the Random surveillance strategy. (E) The schematic illustration of the history
surveillance strategy for previously infected (PI). (F) Surveillance objectives.

Note: In panel A, the first time phase is for training and the second one is for epidemic simulation. In panel B, C, D, and E,
the horizontal line denotes an individual and the circles and vertical lines indicate the interaction. We marked the first
infected node as “Seed” in the second time window, the node selected randomly to trigger surveillance strategy as
“Random”, the node for sentinel surveillance as “Monitor” following different strategies. In epidemic simulation, gray and
black circles with red borders denote infectors and infectees, respectively. In panel F, we compared the prevalences
between nodes in the surveillance subset and those in the whole population. We calculated the time lag between the two
groups reaching 1% prevalence (early warning) and their epidemic peaks (peak lag).

* means the end time of the training phase.
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FIGURE 4. Early warning and Peak lag of the random, recent, frequent, and history strategies. (A) Early warning in the
Prostitution network. (B) Peak lag in the Prostitution network. (C) Early warning in the Email network. (D) Peak lag in the
Email network. (E) Early warning in the Dating network. (F) Peak lag in the Dating network.

Note: The history strategy here uses the EHR records obtained from historical seasons two years ago. The horizontal and
vertical axes present the early warning (days) in the left panels and Peak lags (days) in the right panels for each strategy
over effective reproduction numbers (R.). Bars and error bars indicate the mean and standard deviations across 100
simulations of each temporal network. The burstiness of Prostitution, Email, and Dating are 0.39, 0.62, 0.72 (Supplementary

Table S2, available in http://weekly.chinacdc.cn).
Abbreviation: EHR=Electronic Health Record.

and developed areas in near future, we expect our
EHR-based strategy to become increasingly widely
used in China.

We concluded that the proposed strategy of using
historical records for sentinel surveillance selection is
competitive with other existing surveillance strategies
in temporal networks and can be taken as a practical
and robust alternative without the knowledge of
individual contact behaviors for public health
policymakers.  This  study can  deepen  the
understanding of sentinel surveillance and guide future
strategies with diverse data sources, especially digital
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health data.
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SUPPLEMENTARY MATERIAL

Methods

Surveillance strategies: We investigated three temporal-network strategies for designing network-based
surveillance systems. In a temporal network, we divide the time duration of individual contacts into two sequential
periods: the experience period and the evaluation period. The reference strategies used for surveillance are:

@ Random: target an individual randomly;

@ Recent: target the most recent contact individual of random individuals in the experience period;

@ Frequent: target the most frequent contact individual of random individuals in the experience period.

Contact network data sets: To test the generality of our methodology, we also compared it with available
temporal-network surveillance strategies shown in Bai et al. (1), using three classes of temporal complex networks
with distinct temporal features:

@ Prostitution: A sexual network, collected from a Brazilian online forum, includes N=16,730 individuals and
E=50,632 sexual contacts over T=2,232 days. The contact at a given time represents the reported sexual encounter
between a male sex buyer and a female escort (2-3).

® Email: A communication network, collected from one of the main mail servers of a university (4), includes
N=2,997 email accounts and E=202,694 contacts over T=82 days. The contact at time t represents the interaction
of two email accounts by sending or receiving a message (2,4).

@ Dating: A sexual network, collected from an Internet dating community (5), includes N=28,972 individuals as
well as E=430,827 sexual contacts over a span of T=512 days. Each contact demonstrates the initial dating
interaction between two individuals (2,5).

The degree distributions of all three temporal networks follow a power law (7). Additionally, they show different
degrees of burstiness (the phenomenon that human activities often happen intensively in short periods separated by
periods of quiescence (2)] and persistence [the fraction of edges that is present both in the first and last 5% of the
contacts by the Jaccard similarity coefficient (2)].

The three temporal networks show high values of burstiness with Prostitution at 0.39, Dating at 0.62, and Email
at 0.72. At the same time, they possess different values of persistence, with Prostitution and Dating as 0, and Email
as 0.18 (1).

The time scales of the temporal contacts in the above three datasets are greatly different. The mean number of
contacts per individual in 7 days in prostitution, email, and dating datasets are 0.8, 18.4, and 16.1, respectively. We
rescaled the time scales of the temporal contacts in these datasets to reduce the difference in physical contacts that

SUPPLEMENTARY TABLE S1. Infection probability of influenza virus in Hong Kong Special Administrative Region.

Infected in first year Infected in second year Mean infection probability in third year Number of cases
Yes 22.49% (95% Cl: 16.78%, 28.20%) 209
No No 17.53% (95% Cl: 15.66%, 19.39%) 1,592
Yes 3.57% (95% Cl: 0.00%, 10.90%) 28
No ves 7.81% (95% Cl: 4.86%, 10.77%) 320

Note: We estimated from a cohort of 956 participants from 2008 to 2011 with annual electronic records (7). We separated the four-year
dataset into two three-year sub-datasets of 2008 to 2010 and 2009 to 2011. Cases were selected following different criteria from the two
sub-datasets and aggregated together to estimate the infection probability in the third year. We estimated the probability of a case infected
in the third year, which was infected or not in the past two years.

Abbreviation: Cl=confidence interval.

SUPPLEMENTARY TABLE S2. Properties of temporal networks.

Dataset Number of nodes Number of edges Time steps Time unites Average degree Burstiness Persistence

Prostitution 16,730 50,632 2,232 days 1 day 15 0.39 0
Email 2,997 202,694 82 days 1 second 15 0.62 0.18
Dating 28,972 430,827 512 days 1 second 8 0.72 0

Chinese Center for Disease Control and Prevention CCDC Weekly / Vol. 4/ No. 46 S1
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scenarios.

R Network Me:: Tg;;: cl) Me';f?guse;cn Mea?xe((;?;; cly MeaTs(;%% ci)
12 0.06 (~0.35, 0.47) 1.06 (-0.43, 2.54) 117 (-0.41, 2.75) 1.78 (0.00, 3.56)
15 0.05 (-0.28, 0.39) 1.07 (-0.61, 2.76) 116 (~0.61, 2.94) 1.49 (-0.21, 3.18)
18 Prostitution 0.04 (-0.24, 0.33) 0.83 (~0.77, 2.42) 0.92 (~0.77, 2.61) 1.29 (-0.37, 2.94)
2 0.03 (-0.17, 0.24) 0.69 (-0.47, 1.85) 0.75 (-0.45, 1.95) 0.98 (-0.35, 2.31)
3 0.02 (-0.16, 0.21) 0.58 (-0.73, 1.89) 0.62 (-0.79, 2.04) 0.71 (~0.54, 1.95)
12 1.71 (-4.01, 7.43) 4.35 (-3.40, 12.11) 3.86 (-3.15, 10.87) 4.60 (-1.58, 10.77)
15 3.34 (-6.71, 13.40) 7.15 (~3.96, 18.26) 7.05 (-4.08, 18.18) 6.72 (~4.47, 17.91)
18 Email 0.54 (~2.60, 3.68) 2,52 (~4.66, 9.69) 2.72 (~4.50, 9.95) 2.92 (-4.22, 10.05)
2 0.88 (~4.65, 6.42) 1.84 (-5.74, 9.41) 1.93 (-5.14, 9.00) 2.08 (-4.91, 9.07)
3 0.51 (~3.47, 4.50) 1.34 (-4.68, 7.35) 1.72 (~6.04, 9.48) 1.49 (-4.77,7.74)
12 479 (-8.91,18.49)  22.35(3.52, 41.17) 2235 (4.21, 40.49) 15.91 (~2.26, 34.08)
15 2.48 (-3.68, 8.65) 15.81(-1.39,33.01) 1542 (-1.15,31.99)  10.39 (1.14, 19.64)
18 Dating 310 (-6.52,12.72) 1349 (-3.14,30.12) 1317 (-3.05,29.40)  12.07 (-2.96, 27.11)
2 338 (-8.14,14.89)  13.90 (-3.17,3097)  13.60(-3.51,30.70)  11.52 (-6.18, 29.22)
3 1,01 (-1.01, 3.03) 5.69 (2.18, 9.21) 5.59 (1.98, 9.21) 4.43 (0.64, 8.22)

Abbreviation: Cl=confidence interval.

SUPPLEMENTARY TABLE S4.

Peak time (days) of

optimal testing strategies for a range of influenza transmission

scenarios.

R Network MeaR: r(‘gso;: ci) Me';:a?;se;tcn Meaie((:aesr;; ci) MeaTs(;%% cly
12 0.89 (-2.35, 4.12) 0.93 (-2.32, 4.18) 0.98 (-2.19, 4.16) 0.85 (~1.66, 3.35)
15 114 (-2.42, 4.70) 1.19 (~2.84, 5.22) 1.29 (-2.81, 5.38) 1.30 (-2.48, 5.08)
18 Prostitution 1.33 (-2.57, 5.22) 1.20 (-2.86, 5.26) 123 (-2.84, 5.31) 187 (-2.47, 6.21)

2 1,68 (~3.00, 6.36) 1,63 (~3.35, 6.61) 1,58 (-3.45, 6.61) 263 (-2.37, 7.62)

3 1,53 (-2.96, 6.02) 1,65 (-3.22, 6.52) 1.56 (-3.34, 6.46) 2.49 (~2.65, 7.62)
12 0.06 (-0.53, 0.65) 0.00 (0.00, 0.00) 0.01 (0.18, 0.20) 0.06 (-0.58, 0.69)
15 0.75 (-1.92, 3.42) 0.35 (-2.10, 2.79) 0.20 (~1.48, 1.89) 0.25 (~1.14, 1.64)
18 Email 0.20 (-1.26, 1.65) 0.08 (-0.55, 0.72) 0.20 (-1.25, 1.64) 0.15 (-0.74, 1.04)

2 0.58 (-4.31, 5.46) 0.73 (-5.07, 6.53) 0.24 (-3.18, 3.66) 0.24 (-3.18, 3.66)

3 0.45 (-3.61, 4.51) 0.78 (~4.70, 6.26) 0.98 (-5.27, 7.24) 0.87 (~4.49, 6.22)
12 761(-22.17,37.38)  4.12(-12.37,20.60)  7.23(-17.98,32.43)  6.17 (-13.17, 25.50)
15 6.50 (-19.41,32.41)  531(-20.90,31.53)  4.51(-18.49,27.52)  2.78 (~14.79, 20.34)
18 Dating 2.37 (-7.37, 12.11) 256 (-11.69, 16.80)  1.67 (~8.00, 11.34) 258 (-12.72, 17.87)

2 1.99 (-4.61, 8.59) 1.90 (~4.39, 8.18) 2.09 (~4.59, 8.76) 1,58 (-4.33, 7.49)

3 315 (-21.15,27.45)  6.60 (-28.58,41.79)  4.48(-23.82,32.78)  4.18 (~24.55, 32.90)

Abbreviation: Cl=confidence interval.

the infectious virus transmits on (6). Specifically, we sped up the time scale of the prostitution dataset 40-fold and
slowed down the time scales of the email and dating by mapping the one-day time scale in the email dataset and the
two-day time scale in the dating dataset to seven-day, respectively. Finally, the mean estimates are closer among

prostitution, email, and dating datasets, which are 2.97, 3.97, and 9.06 days on average in 7 days.
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SUPPLEMENTARY TABLE S5. Values of parameters in the SIRS epidemic model in networks across effective reproduction
numbers.

Network Effective reproduction number R, Transmission probability g8 Recover rate y (days)

1.2 0.3 7

1.5 0.4 7

Prostitution 1.8 0.5 7
2 0.7 7

3 0.9 7

1.2 0.15 7

1.5 0.3 7

Email 1.8 0.5 7
2 0.6 7

3 0.8 7

1.2 0.2 7

1.5 0.3 7

Dating 1.8 0.35 7
2 0.4 7

3 0.8 7

Abbreviation: SIRS=susceptible-infectious-recovered-susceptible.

Epidemic Model

We simulated epidemic outbreaks using a stochastic chain-binomial model in contact networks with nodes as
individuals and edges as epidemiologically relevant contacts between individuals.

We simulated the susceptible-infectious-recovered-susceptible (SIRS) model: each individual has three states:
susceptible (S), infectious (I), or recovered (R). The transmission probability of the disease in each contact is 3. The
node 7/ will remain infectious for 1/ days, after which it will recover. For each dataset, we simulate multiple
instances of 8 and . We set v to 7 days as the base recovery period (7). The v is calibrated to match the expected
R,. The values of 8 and 7 used in the experiments are listed in Supplementary Table S5. We estimated R, by the
secondary infections of the earliest infected cases, which count for 1% of the population. We started simulations in
temporal networks by randomly sampling one seed to be infectious.

The disease prevalence is counted as the number of infectious people over time. We divided the temporal contacts
into 7=4 phases, with each phase as one season. In each phase, we randomly selected one individual as the source of
infection. To simulate the cross-immunity, we asserted that the individual infected in the previous season will not be
infected in the current season, as that the immunity period of influenza had been over one year (8-9). We used the
last season as the test epidemic season and used the contact information data in the previous 7)-1 seasons for training
surveillance strategies.

Following (10-12), we used the following two criteria to evaluate the performance of each surveillance strategy in
the test epidemic season:

® Early warning. Let 7, be the time at which the disease prevalence reaches a predefined threshold 4 in the
entire population (EP), and tff the time at which the disease prevalence reaches the same threshold ;=1% in the

. . o , EP _ SG
surveillance group (SG). The early warning criterion measures the time lag 7, - 7,”.
EP SG . : . . .
@ Deak lag. Let #,0.1, 40a be the time at which the disease prevalence reaches the peak prevalence in the entire
. . : . o . EP SG
population and in the surveillance group, respectively. Peak lag criterion measures the time lag 7., = %pca-

Limitations
We would highlight several limitations in our study. First, we assumed the consequent outbreaks have similar
circulating strains over seasons in our simulations, and individuals infected last season have immunity protection
against infection in the consequent season. However, if the circulating strains are different during two consecutive
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influenza seasons, there is weak cross-immunity protection. In this situation, the previously infected individuals in
the last outbreak may be chosen directly for the sentinel surveillance of the studied outbreak. Second, the lack of
influenza circulation in the past seasons during 2020 and 2021 would reduce the immunity level in the population
level (13). For the sentinel surveillance of outbreaks in the winter of 2022, we suggest the selection of individuals
based on EHR data before the COVID-19 pandemic, for example, in the winter of 2019. Third, we did not model
the influenza vaccination in our simulations significantly. However, the effective reproduction number in our
simulations has included the impact of vaccinations on transmissions, with higher vaccine coverage resulting in
lower effective reproduction numbers. To reduce this potential bias in practice, we suggest excluding those
individuals vaccinated in the near period in the sentinel surveillance set. Fourth, it is plausible that not all infected
individuals will seek treatment and leave their records. According to our prior study (/4), the EHR-based strategy
did not work well when the probability of secking treatment and having an influenza record does not exceed 25%,
which we believe also holds in the temporal network qualitatively. Fifth, in the study of temporal networks, we
mainly considered the individual contacts. Environmental variables may have an inevitable effect in determining
whether a pathogen can become epidemic, for example, absolute humidity and temperature on influenza (15-16).
We may include these additional effects on the transmission rate in the future for disease modeling of specific
infectious diseases. Sixth, we divided the time duration of temporal networks into the experience and evaluation
periods. However, human movements have seasonal patterns (77), which may enhance the performance of our
proposed strategy. For the example of winter influenza, we may only use the history of winter influenza for the
proposed strategy to learn, but not the overall annual history of influenza infection. Seventh, to validate our
assumption of the impact of cross-immunity on early surveillance, we conducted a real-world evaluation using
historical influenza infections from a cohort study. Although the group following the EHR-based strategy had a
higher relative infection probability than other groups, influenza transmission is complex and has age-specific
heterogeneity, which is not included in our modeling. However, we believe our result still holds qualitatively.
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