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Given the worldwide pandemic of the novel coronavirus disease 2019 (COVID-19) and its
continuing threat brought by the emergence of virus variants, there are great demands for
accurate surveillance and monitoring of outbreaks. A valuable metric for assessing the
current risk posed by an outbreak is the time-varying reproduction number (Rt). Several
methods have been proposed to estimate Rt using different types of data. We developed a
new tool that integrated two commonly used approaches into a unified and user-friendly
platform for the estimation of time-varying reproduction numbers. This tool allows users to
perform simulations and yield real-time tracking of local epidemic of COVID-19 with an R
package.
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INTRODUCTION

The novel coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has led to 257 million confirmed cases and 5.15 million
deaths worldwide by November 22, 2021 [1]. The COVID-19 pandemic continues to pose substantial
risks to public health, and the situation is worsened by the emergence of SARS-CoV-2 variants with
potentially higher transmissibility [2].

Quantification of the transmissibility during epidemics is fundamental for designing and
adjusting public health responses. The time-varying reproduction number Rt, defined as the
expected number of secondary cases of disease caused by a single infected individual at time t,
is a key epidemiological measure of transmissibility, with Rt < 1 indicating that incidence is in decline
because of either successful control measures or population immunity having reached a sufficiently
high level to limit further transmission. The real-time monitoring of Rt provides feedback on the
effectiveness of interventions and on the need to intensify control efforts [3, 4].

A large number of methods have been proposed to estimate Rt from surveillance data [5–12].
There are generally two categories. One is based on fitting mechanistic transmission models to
incidence data, and the other is a statistical approach requiring case incidence data and the
distribution of the serial interval (the time between symptom onsets in a primary case and
secondary case) [13]. The mechanistic models are often complicated to deal with because of the
potential for biases in the reported incidence data and the context-specific assumptions made. The
statistical method proposed byWallinga and Teunis [13] is relatively simpler but still has drawbacks.
Estimates of Rt can vary considerably over a short period when the data aggregation time step is
small. To overcome these limits, Cori et al. [14] developed a generic tool for estimating Rt with a
ready-to-use R software package EpiEstim, which has been frequently used to analyze the recent
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outbreaks of COVID-19. After searching CRAN package data
which retrieve package download information from the RStudio
mirror, we found that the most popular packages providing
estimation of time-varying reproduction number include
EpiEstim, EpiNow2, R0, epidemia, and nbTransmission. All of
these tools use statistical methods to estimateRt from surveillance
data and are widely adopted to study COVID-19.

Recently, a new method was proposed by Hay et al. [15] using
information inherent in cycle threshold (Ct) values from reverse
transcription quantitative polymerase chain reaction (RT-qPCR)
tests to estimate the time-varying reproduction number from
positive samples. Ct values are semiquantitative results provided
by RT-qPCR tests. It is common when testing for infectious
diseases to use this quantification of sample viral load. Lower Ct
values indicate higher viral loads, and a Ct value below 40 gives a
positive result. Based on cross-sectional virologic surveys
(observed viral loads), this method overcomes the biases in
traditional approaches resulting from testing constraint,
unrepresentative sampling, and reporting delays. They also
developed the R package virosolver to infer epidemic dynamics
including estimation of Rt.

In this study, we chose EpiEstim and virosolver as the
representatives of traditional and new methods, respectively.
Although the accuracies of the two approaches have been
separately demonstrated, there is still a lack of comparison
between the two methods to the best of our knowledge.
Therefore, we quantify the accuracies of EpiEstim and
virosolver in different transmission scenarios by individual-
based simulations and develop a ready-to-use R package for
researchers to compare different Rt methods with the
synthetic truth.

METHODS

SEIR-based simulation
To assess the performance of the methods, we simulate outbreaks
in three scenarios with different basic reproduction numbers
(R0 � 2, 5, 10, respectively) using SEIR-based simulations as the
baselines. The three scenarios could represent the situations of
wild type, Delta variants, and potential variants of SARS-CoV-2
with higher transmissibility, according to R0 estimates given by
previous studies [16, 17]. The model parameters were determined
on the basis of existing literature and epidemiological
characteristics of COVID-19 in Hong Kong in early 2020 [14,
15, 18]. In particular, we adopted the prior distributions for the
parameters of the SEIR model given by Hay et al. [15]. The SEIR
model is a compartmental model which assumes that the growth
rate of new infections depends on the current prevalence of
infectious and susceptible individuals by modeling the

proportion of the population who are susceptible (S), exposed
not infectious (E), infectious (I), and recovered (R) with respect to
disease over time, as illustrated in Figure 1. A stochastic SEIR
model is implemented, and the R package odin is used to solve the
model and obtain true infections over time. The true value of Rt is
estimated as Rt � St ×

βt
γ , where St is the proportion of susceptible

population, βt is the transmission rate at time t derived from the
compartmental transition equations, and 1/γ is the average
infectious period.

EpiEstim and virosolver methods were run separately on the
same simulations for comparison. For EpiEstim, it relies on two
inputs: incidence time series and the serial interval distribution.
Incidence data by days since the start of outbreak were generated
from the simulated SEIR epidemic. We used an empirical serial
interval distribution informed by a previous outbreak of COVID-
19 in Hong Kong in early 2020 [18], and we also used the
simulated serial interval distribution for comparison, denoted
by EpiEstim (empirical SI) and EpiEstim (simulated SI) in
Figure 2. We assumed that the simulated serial interval
distribution has the same standard variation as that of the
empirical serial interval distribution and inferred the mean of
the simulated serial interval distribution by conducting numerical
experiments on a range of means from 1 to 10 with a step of 0.1
and chose the one yielding the least root mean square error
(RMSE). For virosolver, the input data include population-level Ct
values over days since the start of outbreak, and individual-level
viral kinetics model over days since the infection. The Ct values
were generated for all exposed, infectious, and recovered
individuals when they were samples based on the Ct value
model proposed by Hay et al. [15], and the viral kinetics
parameters were also given in their study. We assumed that
the Ct values were observed from randomized samples of the
population at selected testing days, and Figure 2 shows the
simulated Ct values of the sampled people every 14 days. Each
panel presents the distribution of observed Ct values among
sampled infected individuals on that testing day. Day 14 and
Day 28 had no data because there was no infection among the
samples at the early stage of the epidemic.

EpiEstim
The framework of EpiEstim is based on statistical assumptions
and Bayesian estimation. Transmission is modeled by a Poisson
process so that the rate, at which individuals infected between
infection and symptom onset generate new infections, is equal to
Rtws, where s is the time postinfection; t is the time post symptom
onset; Rt is the time-varying reproduction number at time t; and
ws is a probability distribution describing the average
infectiousness profile after infection. The incidence at time t is
assumed to be Poisson distributed with mean Rt∑t

s�1It−sws, and
the likelihood of the incidence It given the reproduction number
Rt is:

P(It|I0, . . . , It−1, w, Rt) � (RtΛt)It e−RtΛt

It!

where Λt � ∑
t

s�1
It−sws. Rt is estimated in a time window τ, under

the assumption that the time-varying reproduction number is

FIGURE 1 | The SEIR structure model used to describe the transmission
of infections.
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constant within that time window. Therefore, over time period
[t − τ + 1, t], the likelihood of the incidence during this time
period It−τ+1, . . . , It given the reproduction number Rt,τ ,
conditional on the previous incidences, is as follows:

P(It−τ+1, . . . , It
∣∣∣∣I0, . . . , It−τ , w, Rt,τ) � ∏

t

s�t−τ+1

(Rt,τΛs)Is e−Rt,τΛs

Is!

Using a Bayesian framework with a Gamma distributed prior
with parameters of shape a and scale b for Rt,τ , the posterior
distribution of Rt,τ is assumed to be a Gamma distribution with
parameters (a +∑t

s�t−τ+1Is,
1

1
b+∑

t

s�t−τ+1 Λs
). Hence, inference of Rt,τ

is straightforward from the posterior distribution. Note that the
choice of the time window size τ has an impact on the estimates
of Rt: small values of τ lead to a more rapid detection of
changes in transmission but also more statistical noise; large
values lead to more smoothing and reductions in statistical
noise. By conducting simulation experiments on τ � 7, 14, 21,
respectively, we found that τ � 14 exhibited the best compromise
between high accuracy and easy interpretation, so the window
size was set to be 14 in this study. Readers can refer to Gostic et al.
[19] for a detailed discussion on the sliding window of the
EpiEstim method.

Virosovler
The R package virosolver was developed by Hay et al. [15] using
virological data and Ct values, to infer epidemic dynamics. Ct
values are inversely correlated with log10 viral loads, which
depend on the time since infection. The distribution of Ct
values across positive specimens at a single time point reflects
the epidemic trajectory: a growing epidemic will have a high
proportion of recently infected individuals with high viral loads,
whereas a declining epidemic will have more individuals with
older infections and thus lower viral loads. Using a mathematical

model for population-level viral load distributions calibrated to
known features of the SARS-CoV-2 viral load kinetics, we can use
Ct values from a single random cross section of virologic testing
to estimate the time-varying reproduction number in a
population. For individual i sampled on day u, the Ct value Xi

is assumed to follow the Gumbel distribution as

Xi ~ Gumbel[Cmode(u − tinf), σ(u − tinf)],

where tinf is the time of infection, and Cmode(u − tinf) and
σ(u − tinf) are the location and scale parameters, respectively.
The details of the parameterization are found in [15]. In practice,
virosolver takes an input data frame of Ct values with associated
sample collection dates from RT-qPCR testing and reconstructs
the incidence curve that gave rise to those measurements. By
capturing this logic in a mathematical model, we can obtain a
probabilistic estimate of the underlying incidence curve, thus
time-varying reproduction number having observed a set of Ct
values at some point in time. Noting that the sampling scheme
has an impact on the estimate of incidence, we set the population
number to be 8,000 and sampled 1,000 (1/8) of the population to
fit the local prevalence data of COVID-19 in Hong Kong in early
2020 as a case study [20].

RESULTS

We assessed the performance of EpiEstim and virosovler in three
scenarios where R0 � 2, 5, 10, respectively, in which R0 � 2 can
serve as a demonstration of the outbreak of COVID-19 in Hong
Kong in early 2020. For each scenario, we generated the incidence
data over 100 days based on the SEIR model from 100 stochastic
simulations and estimated the mean incidence. Figure 3 gives the
estimated Rt with the uncertainties (95% credible intervals)
across 100 simulations using EpiEstim and virosolver,

FIGURE 2 | A schematic illustrating how our simulation platform generates a comparison of the estimated Rt from EpiEstim and virosolver. Incidence data and
ground truth were generated from 100 simulations based on the SEIR model (green/gray line and shaded ribbon show mean and the range). Estimates of Rt were
obtained using EpiEstim (red line and shaded ribbon show posterior median and 95% CrI using mean incidence data) and virosolver (blue line and shaded ribbon show
posterior mean and 95%CrI using Ct value model), respectively. EpiEstim using the empirical value of serial interval distribution [18] and the simulated serial interval
distribution are denoted by EpiEstim (empirical SI) and EpiEstim (simulated SI), respectively.
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respectively, and the ground truths for the Rt values are presented
for comparison. EpiEstim with the empirical serial interval
distribution [18] would underestimate Rt. In contrast with
EpiEstim, virosovler provided less biased estimates but
exhibited wider intervals of uncertainty. However, both
approaches performed well in detecting the timing point when
Rt < 1.

To quantify and compare the accuracies of the methods, we
used multiple metrics including coefficient of determination (R2),
Pearson correlation coefficient, and root mean square error
(RMSE). As Figures 3D–F show, in all scenarios, virosolver
almost had the highest R2 and Pearson correlation coefficient
with the ground truth of Rt, suggesting that virosolver had the
highest accuracy and strongest correlation with the synthetic
epidemic growth. In terms of RMSE, the performance of EpiEstim
with the simulated serial interval distribution was the best (lowest
RMSE), and virosolver had the largest RMSE due to its large
estimation uncertainties. We noted that EpiEstim with simulated
SI always performed better than EpiEstim with empirical SI. In
conclusion, virosovler provided more accurate estimates of Rt,
and EpiEstim relied on the adjustment of serial interval
distribution for better performance.

DISCUSSION

Quantifying disease transmissibility during outbreaks is crucial
for designing effective control measures and assessing their
effectiveness once implemented. In the situation where the
incidence is still increasing while the time-varying
reproduction number is actually dropping, there might be a
very different outlook compared to if the incidence and the
reproduction number are both increasing. The platform for
estimating Rt provided here can therefore help epidemiologists
and policymakers to monitor temporal changes in the
transmissibility of COVID-19. The key contributions of our
platform are as follows: 1) our software package integrates the
most popular method (EpiEstim) and the newest approach
(virosolver) into a unified framework, allowing users to infer
real-time viral transmissibility from different perspectives; 2) by
setting the value of R0, users can conduct simulation experiments
on our platform to study the epidemic development and compare
the performances of two approaches accordingly; 3) this platform
is easy enough for nonspecialists to apply by simply inputting the
required data and is also flexible for specialists to use by changing
the parameters setting if needed.

FIGURE 3 | The output of Rt estimates in three designed scenarios and the corresponding outcomes of accuracy assessment. (A–C) The graphical interface by
setting R0 � 2, 5, 10, respectively. We parameterized the serial interval distribution used by EpiEstim with the empirical study [18] and the simulated serial interval
distribution, which are denoted by EpiEstim (empirical SI) and EpiEstim (simulated SI) in figure legends. (D–F) Results of R squared, Pearson correlation coefficient, and
RMSE for both methods in scenarios with R0 � 2, 5, 10, respectively.
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The estimation tools we used here have several limitations and
thus may result in potential bias. For EpiEstim, a preexisting
estimate of serial interval distribution is required as the input
data, which may account for the underestimation of reproduction
number in our simulation study (Figure 3). If data on pairs of
infector-infected individuals are available, the serial interval
distribution can be estimated jointly, which leads to more
precise estimates of transmissibility [21]. In addition, the
inevitable delay between infection and case reporting (the
incubation period) could also result in biased estimation of Rt.
If data on the incubation period are available, a possible strategy
would be to use the incubation period distribution to back-
calculate the incidence of infections from the incidence of
symptoms and then apply EpiEstim to estimate the
reproduction number from those inferred data.

The virologic data-based method, virosolver, as mentioned
above, exhibits greater uncertainty of estimated than EpiEstim.
This is probably caused by insufficient information on Ct value
distribution and viral kinetics model. The viral load kinetics
model used in virosolver was generated on the basis of
observed properties of measured viral loads in the literature,
and these results were applied to inform priors on key parameters
when estimating reproduction numbers. The estimates can
therefore be improved by choosing more precise, accurate
priors relevant to the observations used during model fitting.
For example, the model should be adjusted by specifying different
distributions if results come from multiple testing platforms.
Results may also be improved if individual-level features such
as symptom status, age, antiviral treatment, and vaccination
record are available and incorporated into the Ct value model.

Apart from the two methods presented in our study, many
other approaches are still available, which we will include in this
platform in the future to track disease transmissibility by using
other data sources (e.g., hospitalization and death). Additionally,
genomic data are also of great importance in the inference of
transmissibility of COVID-19 considering recent emergence of
virus variants [22].We only provide incidence and Rt estimates as
the outputs; other epidemiological metrics such as prevalence,
hospitalization, admission to ICU, death, and the economic
analysis, such as net monetary benefit (NMB), are not
included in our platform. Besides, we used the SEIR model for
simulation in our package, because Hay et al. [15] had studied

four other epidemic models for fitting cross-sectional viral load
data, namely, the SEIR model, exponential growth model,
SEEIRR model, and Gaussian process model, and they also
made a comparison of these models. They found that the
SEIR model was the most appropriate as it consistently
provided unbiased, constrained estimates of transmissibility
during the epidemic growth. We may explore these models
and other individual-based models (branching process, for
example) in future studies.

Our tool can also be applied to the new variants of SARS-CoV-
2 as long as incidence data and Ct values of the infected people are
available. Users can obtain a more accurate estimation by
adopting the updated parameters of serial interval distribution
and viral kinetics model for objective variants informed by recent
studies [23–26]. In conclusion, we have established a platform for
simulation and inference of time-varying reproduction numbers
by incorporating two commonly used approaches. We would
ensure our tool to epidemiologists and public health
organizations in a wide range of future outbreak response
scenarios.
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